

Raising awareness and addressing statistical anxiety

Sue Johnston-Wilder

How prevalent is maths anxiety in UK? Baker 2019

Figure 2 - Grouped mathematics anxiety

The problem

- Learners are naturally curious
- •Fear is learned
- •Things that cause fear become avoided
- •Vicious cycle
- •Combined with fixed mindsets:
 - "I am not a maths/stats person"
- •Self-fulfilling prophecy

The facts

- •As a survival strategy the brain seeks to distinguish challenge from threat to well-being
- •The brain doesn't distinguish between physical and social threats, such as being left behind or humiliated or shouted at
- •Previous threats are remembered
- •When the brain (sub-consciously) perceives a threat, it responds by fight or flight mode, at least initially

How do anxious students behave?

Maslow 1962

[Students] grow forward when the delights of growth and anxieties of safety are greater than the anxieties of growth and the delights of safety.

How can we know when a [student] feels safe enough to choose the new step ahead? Ultimately, the only way is by [their] choices...

Mathematics anxiety...

...as a symptom that basic psychological needs are not being met

Basic psychological needs?

What are they?

- •Maslow: safety, then ...
- •Deci and Ryan:

competence, relatedness, autonomy

Resilience

Resilient learners:

"students who succeed despite the presence of adverse conditions"

(Waxman, Gray & Padrón, 2003)

Mathematical resilience: "maintaining self-efficacy in the face of personal or social threat to mathematical well-being"

(Johnston-Wilder & Lee, 2010)

Resilient learners:

- •Are flexible, adaptable & tolerate ambiguity
- Anticipate problems & solve them logically
- •See creative solutions to challenges
- •Have positive self-esteem
- •Are curious & learn from experience
- •Are durable & independent
- •Have an internal locus of control
- •Have an achievement oriented attitude
- •Know how to maintain mathematics well-being/mental health

The hand model of the brain

The hand model of the brain

Key message: the brain cant panic and think at the same time

https://www.youtube.com/watch?v=gm9CIJ74Oxw

The growth zone model

The three zones

Cruising in the **comfort zone** can build self-confidence & provide opportunities for practice & automaticity.

New learning happens in the growth zone – it should be safe to make mistakes, get stuck, require support & find activity challenging & tiring.

The **danger zone** is where what is being asked is not within the learner's reach *at the moment*, even with support. Stress increases and little or no useful learning takes place.

Metaphor

Think of equivalence of physical safety ...

... going on a long hike with students ...climbing a crag with students

Introducing the RAG cards

The growth zone model

- •Accept feeling of stupidity in red zone as temporary
- •How to get out of the red zone?
- •Building experience of being in and extending the orange zone

Getting out of the red zone

- •Relaxation response (Benson 2000)
- •Rest and digest
- •5/7 breathing
- •Focus on 5 things you can hear
- •Go for a walk
- •Don't try to do stats whilst your brain is focused on the "tiger"!
- •Has anyone met mindfulness?

Four elements of orange zone:

- •Growth mind set
- •Value, purpose or meaning
- •Personal agency, struggle & persistence
- •Inclusion, support & community

Building the orange zone

- Ask questions
- •Try a simpler example
- •Support each other
- •Use the Internet
- •Expect to get stuck
- •Expect to make mistakes
- •Use rough work

The ladder model

Bruner's ladder of accessibility

According to Bruner (1966), people learn in **3 stages**:

- 1. Enactive: by handling real objects
- **2. Iconic**: through pictures
- **3. Symbolic**: through symbols

Moving to the symbolic stage too quickly can interfere with understanding and cause learners to struggle & loose confidence.

Accessible activities allow learners to visualise, manipulate objects and relate maths to the real-world.

Tools in practice

•Red means stop talking and listen! This practice takes a while to develop as a teacher!

•Some teachers give each learner a copy of the GZM to use with a coin

•Some teachers give learners opportunity to write their own words for the feelings in each zone

•How would you use the tools?

Suggestions for further reading WARWICK

Bandura, A. (2007). Self-efficacy conception of anxiety. Anxiety Research, 1(2), 77–98.

- Carey, E., Devine, A., Hill, F. Dowker, A. McLellan, R., Szucs, D., (2019). Understanding Mathematics Anxiety: Investigating the experiences of UK primary and secondary school students. London: Nuffield Foundation.
- Cousins, S., Brindley, J., Baker, J., & Johnston-Wilder S. (2019). Stories of mathematical resilience: how some adult learners overcame affective barriers. *Widening Participation and Lifelong Learning*, 21(1):46–70.
- Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Maths anxiety: what have we learned in 60 years? *Front. Psychol.*, http://doi.org/10.3389/fpsyg.2016.00508
- Lyons, I.M., & Beilock, S.L. (2014). When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math. *PLoS ONE*, https://doi.org/10.1371/journal.pone.0048076
- Maslow, A. H. (1962). *Towards a Psychology of Being.* Princeton: D. Van Nostrand Company.
- Tobias, S. (1987). Succeed with Math: Every Student's Guide to Conquering Math Anxiety. New York: The College Board.
- Vansteenkiste, M., & Ryan, R. M. (2013). On Psychological Growth and Vulnerability: Basic Psychological Need Satisfaction and Need Frustration as a Unifying Principle. *Journal of Psychotherapy Integration*, 23(3): 263-280.