Measuring the Mathematics Problem

Trigonometry

This report is published under the auspices of:

- TheLearning and TeachingSupport Network (Maths, Stats\& OR)
- The Instituteof Mathematics and itsApplications
- TheLondon Mathematical Society
- TheEngineeringCouncil

Acknowledgements

The findings and recommendations in this report emerged from a seminar at the M øller Centre Cambridge, 10-11 May 1999.

Thanks are extended to the Gatsby Charitable Foundation who sponsored the seminar; to those who attended and presented papers or contributed to discussions; and to Trevor Hawkes and Mike Savage for their efforts in producing the report.

Preface

Evidenceispresented of a serious dedine in studentsmastery of basic mathematical skills and level of preparation for mathematics-based degreecourses. Thisdedineiswell established and affectsstudents at all levels. Asa result, acuteproblems now confront thoseteaching mathematicsand mathematics-based modulesacrossthefull rangeof universities.

This report is aimed, therefore, at thosein Higher Education who teach mathematics-based modules and those involved with admissions. Thereis a need for each department to becomeattuned to thefull extent of the problem as it affectstheir students. Thediagnostictesting of new undergraduates is recommended as an effectivemeans of achievingthisgoal.

The report is al so aimed at thosecharged with responsibility for setting theA-level Mathematics curriculum. Followingthemany changes introduced in theearly 1990's we would suggest that now isthetimeto takestock.

Measuring the Mathematics Problem

Summary

Findings

1. At least 60 Departments of Mathematics, Physics and Engineering gi vediagnostictestsin mathematicsto their new undergraduates.
2. Thereisstrongevidencefrom diagnostictests of a steady decline over the past decade of fluency in basic mathematical skillsand of thelevel of mathematical preparation of students accepted onto degreecourses. Possiblereasonsfor thisinclude:

- changes in GCSE and A Level syllabuses and structures;
- greatly reduced numberstakingA Level Mathematics and Further Mathematics;
- changes in theteaching forceand in society;
- ladk of practiceand poor study skills.

3. Thereis an increasinginhomogeneity in themathematical attainments and knowledgeof studentsentering science and engineering degreeprogrammes. Factorshereindude:

- insufficient candidates with satisfactory A-level Mathematicsgrades for thenumber of degreeplaces available;
- thefreedom of A-level studentsto chooseStatisticsasan alternativeto Mechanics, a choicethat provides much less reinforcement of thepuremathematics.

4. Thedeclinein skills and theincreased variability within intakes are causing acuteproblems for thoseteaching mathematics-based modules acrossthefull range of universities.
5. Diagnostictestsplay an important part in

- identifyingstudents at risk of failing becauseof their mathematical deficiencies,
- targetingremedial help,
- designing programmesand modulesthat takeaccount of general levels of mathematical attainments, and
- removingunrealisticstaff expectations.

6. Diagnostic testing should be seen as part of a two-stage process. Prompt and effectivefollow-up isessential to deal both with individual weaknesses and thoseof the wholecohort.
7. Thereis a need for greater institutional awareness of thecited problems and for adequate resources to deal with them.
8. Thedecline in basicskillsis not thefault of theteachers in schools. Compared to their predecessors, they have to deliver a different curriculum, under very different and difficult circumstances, to quitedifferent cohorts of students. From primary through to tertiary education, teachers sharethecommon goal of inspiringyoung peopleto take mathematics seriously and to learn it well. They need to work together and to support each other in providingstudents with a coherent curriculum and a positivemathematical experiencethroughout their education.
9. Thereis al so a need for themathematics community, and its stakeholders in the broadest sense, to speak with one voice, to beheard in decision-making processes, and to represent its viewseffectivel y to the public through themedia. A great step forward would bethecreation of a small but representativeStandingCommitteefor Mathematics which could act as atwo-way conduit between themathematicscommunity and the bodiestaking decisions affecting mathematics and mathematics education; in particular, theCommittee would begiven very early notice of possiblegovernment initiatives concerning mathematics and would bein a position to offer authoritative and representative adviceto government and senior civil servants.

Recommendations

1. Students embarking on mathematics-based degreecourses should havea diagnostictest on entry.
2. Prompt and effectivesupport should beavai lableto studentswhosemathematical background is found wanting by thetests.
3. The possibility of settingup a National Centrefor Diagnostic Testing should beclosel y looked at. It would offer a flexibletest-creation service with a broadly-based and easily-accessible database of questions to a wide rangeof educational institutionsinvolved in theteaching and learning of mathematics.
4. In order to develop and monitor a mathematical education that is(i) appropriateto theneeds of the 21st century and (ii) fully integrated from primary through to tertiary levels, the Government should establish a Standing Committeefor Mathematics to include representatives from all sectors and stakeholders.

Measuring the Mathematics Problem

Contents

Acknowledgements i
Preface ii
Summary iii
1 Background and Outlineof Report 1
2 Mathematics at the Interface (1960-2000) 2
A Level Mathematics 2
Changes in A Level Mathematics 3
A Level Mathematics Teaching 4
3 Diagnostic Testing in Theory and Practice 5
3.1 Changes in theCompetency of A Level Students 6
3.2 Diagnostic Testing in theDepartment of Mathematics (University of Warvick) 11
4 Provision of Additional Support 15
5 Findingsand Recommendations 17
6 Appendices 18

1. Mathematics at theInterface 18
2. A Level Mathematics: thepost 16 perspective 19
3. Reviews of Diagnostic Testing 20
4. Further Evidence of theDedine 27
5. List of Participants 28

1. Background and Outline of Report

Thispast decadehasseen aseriousdedinein students' basicmathematical skillsand level of preparation on entry into Higher Education. Atleast60 Departmentsof Mathematics, Physicsand Engineeringnowgivediagnostictestsin basic mathematicsto their new undergraduates. Thisdedinepresentsamajor problemin mathematicsbased degreecourses right acrosstheHigherEducation sector - onewhich iswidelyadknowledged.

Theproblem has becomesteadily worsesincethemid 1990'swhen several reportsdrew attention to theemerging "mathematicsproblem" at thesixth form/ HE interfaceand theinevitableconsequencesfor studentsentering undergraduatecourses in scienceand engineering; Instituteof Physics(1994), EngineeringCoundil (1995), Instituteof Mathematics and itsApplications(1995), London Mathematical Society (1995). In "TacklingtheMathematics Problem" it waspointed out that (i) Mathematics, Scienceand EngineeringDepartmentsappear unanimousin their perception of a qualitativechangein themathematical preparedness of incomingstudents - even amongthevery bestand (ii) studentsenrollingon coursesmakingheavymathematical demandsarehampered by a seriousladk of essential technical facility - in particular, alack of fluency and reliability in numerical and al gebraicmanipulation and simplification.

It was to accumulateevidencefor theextent of this dedineand its effect on first year undergraduateteaching and learningthat a Gatsby Seminar was held on the 10th and 11th May 1999 at theMøller Centrein Cambridge The 35 participants weremainly practitioners in Higher Education but al so included representatives from the Qual ifications and Curriculum Authority, Mathematicsin Education and Industry and theGatsby Technical Education project.

The Seminar ranged over thefollowing related themes:

- Theevolution of MathematicsA-level and other post-16 qualifications; thecurrent situation in schoolsand colleges.
- Diagnostictesting in theory and practice.
- Usingdiagnosticteststo identify individual students' learning needs, to alert their teachers, and to inform moduleand curriculum design.
- How best to provideadditional mathematicslearningsupport; espediallyremedial help, Communicationsand Information Technology (CIT) solutions.
- Thebroader national perspective on teachingand learning and the role of themathematics community.

As a result thereport fallsnaturally into threemain sections and a summary;

M athematics at the Interface (1960-2000) which mapsout themany changes to A level Mathematics and their effect on HE over thepast four decades.

Diagnostic Testing in Theory and Practice examines the testing procedures in use at theUniversities of Coventry and Warwick. They provideevidence of a steady declinein mathematical capabilities over a decadeand illustratethat the declineis affecting even thosedepartments who admit students with very high grades (29 or morepoints at A level).

Provision of additional support identifies a range of follow-up strategies by which University Departments aretrying to copewith the problem of mathematical deficiencies. Thereareno simplesolutionsin this area. Variousavenues arebeingexplored and best practicehasyet perhaps to emerge.

Summary consists of a number of key findings and four recommendations: They may beseen as a way forward in tackling the MathematicsProblem.

2. Mathematics at the Interface (1960-2000)

Mike Savage, Ann Kitchen, Ros Sutherland, Roger Porkess

Consisting of four presentations, theopening session aimed to set the scenefor the seminar by reviewing(i) the changing pattern of theA leve MathematicsCurriculum over four decades and (ii) the effect of this and other changes for students entering mathematics-based degree programmes in Higher Education. An outlineof the key developmentsisgiven in Appendix1.

A Level Mathematics: The Golden Age

Attention was drawn to the 1960's when A level was an entranceexamination controlled by the universities and geared to servetheir needs. Alevel Mathematics consisted mainly of Pureand Mechanics with thelatter providing amplescopefor the useand practice of algebra, trigonometry and calculus. With thebenefit of hindsight thisis now seen as a "gol den age" for A level Mathematicsin which ablesixth formers, aimingfor university, were inspired and stretched by a very talented teachingforce. Students acquired the all important study skillstogether with sound mathematical knowledgeand understanding which prepared them well for Higher Education.

A Level Mathematics: Changes to the Curriculum

Thefirst major changeto thecurriculum appeared in themid 1970's with theemergenceof statistics. Students entering thesixth form now had a choiceof mathematicscourses; (i) Pureand Mechanics, (ii) Pureand Statistics, (iii) Pureand Applied (wherethelatter induded a combination of topicsin Applied Mathematics). This departure from homogeneity in theapplicationsof mathematicsgenerated problemsfor thoseteachingmechanicsin first year undergraduate courses - with theresult that diagnostictestsand/or additional support for mechanics were introduced in many universities. For thefollowing decade, science and engineering departmentslearned to cope with studentshavingvaried badkgrounds in Applied Mathematics. Indeed they wereableto do so becausePure MathematicsatA leve remained solid and studentscontinued to begenerally well prepared with regard to study skills, problem solvingskills and basic mathematical capabilities.

The pace of changequickened in themid 1980's. First, Universities lost control of thecurriculum with SEC, SEAC, SCAA and now QCA validating courses. TheGovernment gavethegreen light for curriculum development and a series of new, modular-typeA level Mathematicscourses weredesigned and trialled. A level was now viewed asa finishing post at 19 as well as an entrance examination for universities. TheGCE examination was replaced by GCSE which, for Mathematics, brought a dedinein students concept of proof and in their technical fluency and understanding of algebra. At a strokeA level Mathematics was undermined in a key area from which it has not yet recovered!

New A level Mathematics courses came on stream in the early 1990's with several new featuresincluding (i) a diminished puremathscommon core(40\% - reduced to 30\%) (ii) a proliferation of modular syllabuses and (iii) a diversification of content.

Changes in A Level Mathematics : The Effect at 16-19

Theperiod from 1986-1996 wasidentified as oneof great changein A level Mathematics. By contrastingthe teaching and learningsituation pre1986 with that post 1996 several key points areseen to berelevant to the universities perception of decliningstandards, Appendix2. Classsizefor Alevel Mathematics, pre1986, had a mean of around 10 and a maximum of about 15 with moststudentstaking3-4 scienceor mathsA levels and going on to study Science, Mathsor Engineering in HE or out to work. By 1996, dasssizes had significantly increased with a mean of between 15 and 18, Mathematics was beingincreasingly used as athird subject for Arts, Science and theHumanities, and Further Mathematicshad declined, by 50%, Hirst (1991, 1996). Only athird of studentswith A level Mathematicsnow went on to read Mathematics, Science or Engineering and only 40\% of Engineering studentshad any A level Mathematics(UCAS 1996) Indeed somerecruitment, particularly in theformer Polytechnics, was of studentsfrom a vocational background with BTEC and subsequently GNVQ qualifications. With participation in HE having expanded rapidly in recent years it is apparent that many departments had recruited a number of less ablestudents who would not havebeen admitted in thepast. Referring to Kitchen (1999) it was suggested that the perceived dedinein themathematical capabilities of new undergraduates is partly dueto (a) thechangingA level cohort (b) ablestudentschoosing not to study mathematical subjectsin HE and (c) the universities' policy on recruitment.

Changes in A Level Mathematics : The Effect on Higher Education

It ishardly surprisingthat theeffect of substantial changes to thepre 19 mathematics curriculum would befelt across the whole university sector. Initially anecdotal evidence of a serious problem in Higher Education began to emerge;
"studentsdon'tseem to havethebasics!";
"somehavetop grades and arehavingdifficulty with al gebra and cal culus!".

Widespread disquiet within the mathematics community in universities gaveriseto a report "Tadklingthe MathematicsProblem" (LMS1995). Thisdrew attention nationally to the seriousness of the problem particularly for HE - wherestudentswerenow ableto get good grades at 'A' level and yet be unprepared (by earlier standards) for mathematics-based degree programmes. At thistime, manyfirst year undergraduatemathematics teachers, across a range of universities, were reporting theemergence of a 'tail' of weak students(deficient in basic mathematical skills) — a tail which grew in sizeand gaverise to "high failurerates". By thelate 1990'sit was clear that thisdeclinein basi cmathematical knowledge, skills and level of preparation was a sourceof continuing concern for teachers of mathematics-based modules in HE. Theneed to introduce year-on-year changesto the curriculum and to provideremedial help for thosewith themoreobvious deficiencies had becomecommon place. Furthermorediagnostictests, both written and computer-based, wereincreasingly beingintroduced by Departments of Mathematics, Physicsand Engineeringto assesswhatstudentscould and could not do, as well as assesstheir overall level of preparation. In a recent report Sutherland and Dewhurst (1999) considered the mathematical knowledgeof undergraduates as they enter university across a rangeof disciplines. Thisstudy condudesthat theschool curriculum is not adequately preparingstudents for a mathematics degreeor for the mathematical components of other higher degreecourses (Physics, Computer Science, Engineering...). Thestudy also points out that University Departments arefinding various waysto deal with themathematicsteaching of first year undergraduates. Theseindude; theredesign of first year mathematicscourses, theprovision of remedial help, drop-in workshopsand computer-based mathematicslearning centres. It isfurther noted that theassessment of the effectivenessof the changesintroduced, is difficult. For examplethediagnostictestingand computer-based learninghas not been systematically eval uated.

A Level Mathematics Teaching

A feature of theteaching profession over the past 30 years is theloss of status of teachers, and especially maths teachers. As a consequence, the composition of theteachingforcehaschanged as(i) potential and ablerecruits have been put off the profession, not least, by talking to existingteachers who havebecomedemoral ised, and (ii) many older teachers havefelt that retirement is preferable to havingtheir work unappreciated or indeed castigated.

Theneed to recognise theextremely difficult nature of thejob expected of today'sA level Mathematicsteachers was strongly emphasised. Compared to their predecessors, they teach a much changed and now varied curriculum to students with a quitedifferent motivation and background under very different circumstances (larged asss sizes and inhomogeneouscohorts of students). Indeed such teachersneed to besupported and encouraged if we areto stand any chance of attracting able recruits into the profession. It was further pointed out that most of the competent mathsteachers in our schools and colleges arenow in their 40 's and 50 's. Asthey retirethey arenot being replaced by youngteachers of anywhere near thesame cal ibre. Even good schools arefindingit al most impossibleto recruit acceptablenew mathematicsteachers. Many posts arefilled mainly by peoplewho arenot mathematiciansand do not havea sound background in thesubject. Consequently tryingto maintain, letal oneimprove, thequality of studentsleavingschool for Higher Education is rather likerunningup a down-goingescal ator - and onewhich, if anything, isaccelerating. Whatever problems universities now face are likely to get worse rather than better over thenext decade.

[^0]
3. Diagnostic Testing in Theory and Practice

John Appleby, D uncan Lawson, Tony Croft, Trevor Hawkes, D ouglas Q uinney, Brian Sleeman

Diagnostictests area direct response to the perceived dedinein themathematical knowledge and skills of new studentsin relation to themathematical requirements of their programmes of study. Themajority of tests, operatingin DiagnosticMode, aredesigned to assessstudents' prior mathematical knowledgeand skillsand so allow their teachers

- to identify individual strengths and weaknesses
- to identify overall deficienciesin thecohort
- to identify unreal isticstaff expectations
- to inform moduleand curriculum design and delivery.

A second modeof operation istheso-called Drill and Kill Mode, designed for studentson courses requiringhigh Alevel mathematics grades. Students areableto identify particular weaknesses and areas where they areshort of practiceand arethen required to takediagnostic tests repeatedly until they reach a prescribed standard.

Six presentations served to reveal a wide range of evidenceof a declinein themathemati cal preparedness amongst new undergraduates in Departments of Engineering, Mathematics and Physicsfrom both thenew and older universities(Appendix3). Theoverall message wasclear; the problem had becomesteadily worse, was now widespread and theA Level mathematicsgrade is not a reliableindicator of competencein basic skills.

Of these presentations, two aregiven in full - in thefollowing sub-sections - in order to contrast the Diagnostic Mode of testing (at Coventry University) with the Drill and Kill Modeof testing (at theUniversity of Warwick). The first reveals strongevidence of a steady declinein mathematical capabilities over a decadewhereasthe second illustrateshow thedeclineis affecting thosedepartments who admit themost ablestudents (with 29 or more pointsatA-level).

31 Changes in the Competency of A Level Students
 Duncan Lawson, BP M athematics Centre, Coventry U niversity

Introduction

Theexpansion of higher education in the 1980 screated less homogeneity in cohorts of students enteringuniversity. Not only werestudents with lowerA level qualificationsthan in previousyears enteringhigher education there was also an expansion in thetypes of entry qual ifications as vocational education (BTEC sand latterly Advanced GNVQs), Accessand Foundation courses becameaccepted routes into university.

It was against this background of inhomogeneity that Coventry University introduced its standard diagnostic test [1] in 1991. The purpose of thistest was primarily to determinewhat incomingstudents could and could not do. The sametest has been used every year since 1991. It consists of 50 multiplechoicequestionseach offering 1 correct option, 3 (wherever possible, plausible) incorrect options and a Don't Know option. Thetest coversseven topics: basic arithmetic, basic al gebra, lines and curves, triangles, further al gebra, trigonometry and basic calculus.

Two samplequestions aregiven below:
BasicAlgebra If $x(x+1)=6$ then
A: $x=6$ or $x+1=6$
B: $x=6$ or $x+1=1$
C: $x+2=0$ or $x-3=0$
D: $x-2=0$ or $x+3=0$
E: Don'tKnow

Lines\& Curves Thecurves $y=x 2+2$ and $y=3 x$
A: haveno point of intersection \quad B: intersect at the point $(1,3)$ only
C: intersect at thepoint $(2,6)$ only
D: intersectat $(1,3)$ and $(2,6)$
E: Don'tKnow
Studentstakethetest, essentially without warning, during induction week. Theaim of thetest isto discover in which areas of mathematicsstudents haveimmedi atecompetenceand in which they do not. Students are assured that no marks aregiven for the test and that the information gathered from it will beused for their benefit. They aretold that guessingmay obscure weaknesses that they need to correct and areencouraged to sel ect the 'Don't Know' option rather than guess.

Each student receives an indi vidual diagnosis outlininghis/her strengths and weaknesses in the seven topics covered by thetest. (Students arenot given marks, instead they aregiven a qual itative description of their performance on each topic which iseither 'Excellent', 'Satisfactory' or 'Somerevision may beneeded'.) Printed on each diagnosisistheadvicethat, wheretopics havebeen shown to need somerevision, studentsshould visit the BP MathematicsCentrefor discussion with Centrestaff about appropriate action to fill in gaps in background knowledge. TheCentrehas a range of materials availablefor studentsto use, either in theCentre or to take away and offers oneto-onesupport for students. TheCentreoperates as adrop-in facility, currently open for 25 hours per week. It is up to thestudents as to whether or not they takeadvantage of the help avai lablein theCentre. Thereis no compulsion on them to visit. Currently theCentre receives around 1000 student visits per term.

In addition to the personal diagnoses, cohort summariesareal so compiled. Thesecohort summaries aresent to coursetutors to enablethem to advisestudents in moduleselection and to moduleleadersto inform teaching approach (and startingpoint).

When thetest was introduced in 1991 only a relativel y small number of studentstook it. These wereon courses (often engineering HNDswherea high proportion of theintakewas from aBTEC background) whereexperience
had shown that theentry cohort was most likely to struggle with mathematics. Astime has goneby thenumber of courses using the diagnostic test has increased and now it istaken by all studentsentering courses containing a significant study of mathematics(including courses in themathematical sciences). Currently thetest istaken by approximately 600 students per year.

Results

In addition to theimmediateinformation which the diagnostictest provides (and for which it was designed), by recordingtheresults every year, a large database of student performances has been built up which enables a study of changes in performanceover timeto bemade. Such anal yses havebeen published for the data up to 1997 [2-4]. Hereweextend this anal ysisto includetheresults of students enteringhigher education in 1998.

Figure 1 below shows theperformanceof the 1998 entry cohort for thosestudents with $\mathrm{A}-\mathrm{level}$ grades $\mathrm{A}-\mathrm{N}$ and thosestudents with Advanced GNVQ (AGNVQ). On each topic (except triangles, which it could be argued is really aGCSE topic) the performancedecreases with A-level grade and theresults of Advanced GNVQ studentsare significantly below those of students with A-level gradeN.

For grades B to N the worst performanceis in Further Algebra. Thequestions in thissection cover function notation, thefactor theorem, negativeand fractional powers, expandinga cubic, the definition of logarithms, inequalities and partial fractions. Even amongst gradeB students only just over half of thesequestionswere answered correctly. Thishas seriousimplicationsfor the exposition not only of university mathematics but also of many engineeringtopics.

Figure 1: Performance of the 1998 entry cohort

Theresults of theAdvanced GNVQ students areparticularly disappointing. Thesyllabustopicsof theoptional and advanced mathematicsunits in EngineeringAdvanced GNVQ arevery similar to the syllabustopicsin A-level. However, theresultsfrom the 1998 sitting of the diagnostic test indicatethat thesetopics arenot covered in anythinglikethesamethoroughness. Thishas seriousimplicationsfor many engineering courses. Thelatest edition of SARTOR[5] spedifically identifiesAdvanced GNVQ as an acceptablealternativeto A-level as an entry qualification for accredited degreecourses. However themathematical experienceof Advanced GNVQ students is vastly different to that of A-level students.

Figure 2: A comparison of successive cohorts of Grade D students

Figure2 showstheperformanceover time of students entering with A level gradeD. GradeD has been chosen for this analysis becausethere is more datafor this gradethan for any other. Asmentioned above, when the diagnostic test was first introduced it was primarily given to thosestudent groups thought to bemost at risk and thesegroups had very few students with high A-level grades. In later years thereis a reasonableamount of data for all grades.

Theresultsfor gradeD students aretypical of what happensat other grades. This gives dear evidencethat there isa dedineover timein thecompetency of students with thesameA-level gradein thetopics covered by thediagnostic test. Thedifferencebetween the 1991 and 1993 cohorts was small, however there was asharp drop in competency in the 1995 cohort and a further noticeabledrop with the 1997 cohort. Theperformance of the 1998 gradeD cohort is not shown in Figure 2 however it issimilar to that of the 1997 cohort with a marginal improvement in basic algebra and triangles offset by slight dedinein further algebra, trigonometry and basic cal cul us. It is interestingto comparethe performance of different gradecohorts in different years. Figure 3 shows the results for the 1991 gradeN students, the 1993 grade E students, the 1995 gradeD students and the 1997 gradeC students.

Figure 3: A comparison of different grade cohorts from different years

Comparingthesefour cohorts we seethat theN91 cohort performs best in four of theseven topics and theC97 cohort performs best in theother three However, there is no significant differencebetween the overall performanceof thesefour groups. This suggeststhat, in theskillswhich thediagnostictest assesses, thereis a 'grade dilution' of approximatel y onegradeevery two years.

The overall score in the test of students with different A level grades provides somestartling information. Table 1 gives the overall scores (out of 50) for the 91,97 and 98 entry cohorts (gradeA has been omitted becausethesample sizein all yearsis too small to provideany useful information). Comparingtheresults of the 1991 and 1998 cohortsweseethat for grades C to U thescoredrops by, respectively, 7.8, $6.7,7.4,8.7$ and 7.3 (out of 50) or roughly speakingonemark per year.

Table1 also shows what we haveseen in Figure3, namely that theperformance of the 1991 gradeN cohort (score 34.4) isvery similar to that of the 1997 gradeC cohort (score34.0). Whilstit cannot bededuced from thisthat 97 GradeC students would havefailed in 1991 (aswassensationally claimed in theSunday Times[6]) it isstrong evidencethat therearemajor problemsin terms of themathematical skillstraditionally required by university courses. With the 1998 gradeC cohort thesituation iseven worse. Thesestudents scored on average 2.3 marks(4.6\%) less than the 1991 gradeN cohort. Itappears that thededinecontinues.

	1998		1997		1991	
Alevel Grade	Score $(\max 50)$	Sample Size	Score $(\max 50)$	Sample Size	Score $(\max 50)$	Sample Size
B	36.8	27	36.4	17	40.5	2
C	32.1	52	34.0	48	39.9	12
D	30.6	58	30.3	56	37.3	33
E	28.2	46	30.3	48	35.6	63
N	25.7	22	27.8	17	34.4	28
U	22.8	9	23.8	19	30.1	28

Table 1: Diagnostic Test Scores (by A level grade)

REFERENCES

1. A Whitehead, Diagnostic Test, Coventry University, 1991.
2. D N Hunt \& D A Lawson, 'Trends in Mathematical Competency of A-level Students on Entry to University', Teaching Mathematics and Its Applications, Vol 15, No 4, pp 167-173, 1996.
3. D N Hunt \& D A Lawson, ‘Common Core - Common Sense’, in Mathematical Education of Engineers II, pp 21-26, Eds: L.Mustoe \& S.Hibberd, IMA Publications, 1997.
4. D A Lawson, 'What can we expect from A-level Mathematics Students?', Teaching Mathematics and Its Applications, Vol 16, No 4, pp 151-156, 1997.
5. The Engineering Council, Standards and Routes to Registration, 3rd edition, The Engineering Council, London, 1997.
6. J O'Reilly, 'A level standards hit new low', Sunday Times p 28, April 261998.

Further Evidence of a Dedine

Just prior to the publication of this report information cameto light on the diagnostic testing of undergraduate physicists at the University of York, whereProfessorJ Mathew has used thesamemathematicstest to collect data over atwenty year period 1979-1999. Originatingfrom a PhysicsInterfaceProject, thistest was designed to assess basic mathematical knowledge and skills. Two samplequestions arepresented in Appendix 4 al ong with a graph showingtheperformanceover time of different cohorts with similar A level grades. Thisperformanceremains moreor less constant until 1990 when there is a sharp fall followed by asteady dedine over thepast decade - thus confirmingthetrend identified by Dr Lawson.

3.2 Diagnostic Testing in the Department of Mathematics

Trevor H awkes, Department of M athematics, University of Warwick

Academic Background

TheDepartment admits 220 single-honoursmathematicsstudents with an average score of 29.5 on their best threeALevels. All havetaken a STEP or Spedial Paper in Mathematicsand most havepassed thisat Grade2 or higher. Furthermore, themajority havetaken doubleMathsatA-Level. In addition, theDepartmentteachesthefirst-year Mathematicscorecoursesto 150 joint-honours degreestudentsbased in theDepartments of Physics and Statistics. Thesestudents musthavean A gradein A-Level Mathematics and enter with an average of 27 A-Level points; however, they arenot required to takeaSTEP or Special Paper.

TheDepartment offersrigorousthreeyear BSc and four-year MMath programmes includingathorough grounding in traditional Analysisin thefirst year. TheMathematics corehasfour main sequences: Algebra, Anal ysis, Geometry \&Topology, and Applied. Theprogrammeoffers a high degreeof flexibility and, after their first year of study, studentsmay present themselvesfor examination in a widerange of options from both within and without the ScienceFaculty. Thereislittlespace in thecurriculum for remedial courses.

Rationale for Warwick's ‘Drill-and-Kill’ Approach

Duringthe80s, members of theDepartment in thefront line of undergraduateteaching became convinced of a steady declinein thebasic mathematical skills of their new intakes. The students arrived less able to manipulate al gebraic and trigonometricequationsand inequal ities with speed and accuracy, and less proficient at thetasks of basic cal culus, such asdifferentiating and integratingelementary functions. Duringthis period of dedine, the averageA-Level scores of our intakeswent up.

TheDepartment responded in two ways.

- Thesyllabuses of first-year courses were rewritten to reducethesteepness of theinitial learning curve and provide a gentle transition from themoreconcreteand prescriptivestyle of A-Level mathematics to the more conceptual and open-ended approach at university.
- Optional classeswereoffered to first-year studentsto help them plugany gaps they identified in their A-Level skills.

These dasses ran for several years in different formats but wereal ways a failure. After a couple of weeks, attendance would drop to a merehandful. Theclasses quickly becamenegatively seen as'remedial', and thefact that no course credit was attached to them gavetheimpression that the Department did not regard them asimportant.

In themid 90s, a raft of moreradical solutionswereintroduced: weekly marked homework for exam credit in all coremodules, additional small-group teaching (threehours a week in squads of four), a small-classroom approach to teachingAnal ysis, group work, IT-based enhancement of learning. And theoptional classes designed to bring students up to speed in their A-Level skillswerereplaced by diagnostictestsin fiveskill areason arrival, followed by weekly resit tests until a score of at least 80% is achieved. A small amount of exam credit is attached to each of these tests(amounting to 0.4% of theoverall first-year mark, which in turn contributes only 10% to the final degree score) but thisprovidesan effectiveinducement to full participation and widespread success. ThefiveA-Level skill areas together arecal led M athsTechniques and form a small part of thefirst-year bridging moduleFoundations.

TheDiagnostictests

- givestudents immediatefeedback of how they measureup, on arrival at university, to thestandards expected of them in basic A-Level skills,
- givetutors(who mark theDiagnostictests) an instant snapshot of thelevel of basicskillsof thenew students they will beteaching,
- and allow theDepartment to monitor the changingbackground abilities of its incomingstudentsover theyears.

The weekly resittests for students who fail to reach thethreshold of 80\% in one or more of the skill areas in the diagnostictests, and theregular reporting of students' progress to their tutors, send a dear message that theskills are important to further progress in the degreecourse. The very modest amount of exam credit that is awarded for successreinforcesthismessage and provides theincentivefor studentsto develop the accuracy and skill required to achievethe80\% target.

The Logistics

In IateAugust, as soon as theDepartment receives the names and addresses of the admissions candidates who have achieved its offer, a letter is sent to them explaining that there will be a diagnostic test in five skill areas at thestart of term. This mail shot includes a booklet of practicequestions, together with advice on how to deal with them and references to thematerial in standard A-Level texts. Students are advised to spend themonth before they come to Warwick getting up to speed on theseskills and filling in any gaps they may have in their A-Level knowledge(for example, complex numbers).

On thefirst Wednesday of the new academic year, all first-year single-honours and joint-degree Mathematics students sit a 2-hour diagnosti c test covering four skills areas: Differentiation, Integration, Trigonometry, Inequalities. Thetests areheld in normal lecturetheatres, havetheformat of question-and-answer booklets. These aremarked by the students' personal tutors and returned to them the following week at thefirst weekly tutorial, when any shortcomings are identified and discussed.

Studentswho fail to reach the 80\% threshold in oneor more of the four skill areas, can takeresit tests (held at timetabled slotsduring the subsequentsix weeks) asoften asthey like until they achievethispercentage.

To minimisemarking costs, the resit tests arestaged in thefollowing format:

- Beforethetest begins, each candidatecollects a blank answer sheet to which is attached a second carbonised copy and takes a seat in the lecture theatre.
- At thestart of thetest, thequestionsare displayed on a screen usingan OHP.
- At theend of the 30-minutetest, students hand in the carbon copies of their answer sheets.
- Theanswers arethen displayed on the screen and students mark their own papers. They can raisequestions about the val idity of their answers at thisstage.
- Students who claim to havescored 80\% or morehand in their marked top copies. Thesearethen checked against the carbon copies and a sampleareremarked.

Under this arrangement, only a fraction of the successful testsaremarked; no timeis expended marking thetests of theunsuccessful candidates.

A fifth skill area, elementary algebraic manipulation, istested by computer usinga modified version of John Appleby's assessment program D iagnosys, which was originally designed to providediagnostictesting of Engineeringstudents at theUniversity of Newcastle With Appleby's permission, Warwick added libraries of questionsto enableD iagnosys to generateunlimited random tests, atimingmechanism, and an email system for sending progressreportsto students' tutors. To obtain the exam credit for thisfifth skill area, studentsmust passthe

Success in one of the five skill areas is rewarded with a contribution of 4% to the final overall score in the first-year bridging course Foundations. Thus up to 20% of the final Foundations mark comes from the 5 M aths Techniques skill areas but contributes only a maximum of 0.2% to thefinal degreemark.

Students who do not achievethe 80% threshold in oneof the written tests by theend of Week 7 or the 90% target in thecomputer-based D iagnosys test by theend of Week 10, aregiven a score of zero (instead of 4). This unforgivingmarkingsystem stresses the importanceof both accuracy and speed to succeed.

Learning Support

TheAugust mailing of practicetest questionsindudes adviceand referencesto background material in A-Level textbooks.

Tutorsareexpected to offerhelp to thoseof their tuteeswho appear to havedifficultieswith theM athsTechniquesmaterial.

From Week 3 onwards, regular help classes in the variousskill areas are provided for students who arehaving troublepassing theresits. These dasses aretaught by a local retired school teacher.

Much of thefirst-year teaching and learningtakes placein squads of four; theseareestablished at the tart of the academic year and stay fairly stablethroughout thefirst two years of the degree programme. Thesesquadsare encouraged to help each other (when two or threein a squad haveal ready passed a gi ven skill area, they are urged to coach theoneor two that haven't).

Detailed back-up notes areavailablefor the computer test $\operatorname{Diagnosys.~}$

Conclusions

Theapproach described aboveprovides an effectiveand low-cost method of raisingthelevel of basic mathematical skills in beginningundergraduates. Over 350 students from threedepartments are put through the system within a 10 -week term for under $£ 1000$. Thegreat majority of theseachievethe desired 80/90\% thresholds in all skill areas within this time. After such a system has run for two years or more, thetests and related material scan be recycled without risk of compromisingsecurity.

Thehigh entry standards into theWarwidk degreecourseensurethat the great majority of thestudents areableto raisetheir performancein M aths Techniques with theminimum of support and individual attention. It may not work aswell on students with a weaker or morevariablemathematical backgrounds.
In duecourseit ishoped to convert theM aths Techniques resit tests into a computer-based format. Thiswould enabletheteststo be used in both formative (practice) and summative (examination) modes. After theinitial investment, this would reduce costsstill further, and would bring theother advantages of Web-based assessment:

- easymonitoringof individual progress;
- analysis of individual and collectiveweak areas;
- on-linehelp;
- quidk reporting and feedback to students and staff alike.

Problemswith (i) displayingmathematicson theWeb and (ii) examination security still need to be solved.

4. Provision of Additional Support

A Summary of Reports from Working Groups

Oncetheresults of a diagnostictest areknown thequestion arises as to what we do with theresultsof thetest and , in particular, "how do weprovideeffectivesupport for thosestudents with defidiencies in basicknowledgeand skills?".

It was clear from the collectiveexperiences of the seminar participants that thereis no simplesolution- no panaceato what has rapidly becomeone of themost challenging problems at the school/university interface Weareat the stagewherea number of individuals in variousinstitutionsarecurrently exploringa widerange of follow-up strategies. Theseincludesupplementary lectures, additional modules, computer assisted learning, Mathematics Support Centres, additional diagnostic tests and streaming. Each has its merits and brief details aregiven below.

Supplementary Lectures

Oneof thefirst attempted remedies was to introducea series of supplementary, remedial lectures runningin parallel with thefirst year course. Therearetwo problemshere; (i) theneed for students to givesufficient timeand attention in order to master theremedial material and (ii) the danger of overloading weak students with additional studies when they areprobably strugglingwith other modules.

Additional Assessed Modules

Somedepartments requiretheir weaker studentsto rectify their deficiencies by taking additional mathematics modulesalongsidetheir main course. Onceagain thedanger isto overload students with too much additional work. Asoneparticipant remarked "can a student lackingbasic skills copewith the demands of the current mathematics and engineering modules whilst attempting to repair the earlier damage?".

Lower Level, Transition Modules

There is a dear need to circumvent the problem of overload whilst recognising that weak students do need a rel evant transition moduleto makeup for shortfalls in their badkground. A strategy used in someinstitutionsisto replacemainstream mathematicsmodulesby transition or bridgingmodules which permit studentsto get to grips with lower level material at aslower pace and in a lessdiversegroup. Themainstream mathematicsmodules are then taken later in the programme.

For weak studentsthedownside of this approach is that their mathematical experienceremainsout-of- step with themainstream givingriseto other problems

- discovering that they have not covered themathematics required for their engineeringmodules.
- discovering that their optionsareseverel y restricted.

Computer Assisted Learning (CAL)

Theincreasing availability of student centred computer-based support material now presents an ideal opportunity to follow up adiagnostic test and address theproblem of mathematical deficienciesusingCAL.

Given a diagnostic profileof students mathematical knowledge and skills(set against pre-determined objectives in Mathematics) it is now possibleto provideautomaticlinksto CAL material such asthat devel oped under TLTP, for example

- Mathwise; 50 computer based modules developed by theUK CoursewareConsortium
- Calm; computer assisted learning in Mathematics, Heriot Watt University
- Metric; TLTP project based at Imperial College, London
- Transmath; TLTP project based at LeedsUniversity
- Calmat; computer assisted learning in Mathematicsbased at Glasgow Calendonian University.

This approach isbeing pioneered at KeeleUni versity with Dr D. Quinney wheretheaim isto providesupport material wherea central featureis asymbiotic re ationship between computer based material and tutorial support.

Mathematics Learning Support Centres

Several universitieshaveestablished a Mathematics Support Centreto enablestudents experiencing difficulties with mathematicsto obtain supplementary resourcesand tuition. Theaim is to devisefollow-ups to thediagnostic test which aretailored to individual needsand, sincethecentreisopen-access, students can attend at any time. Such centres can bevery effectivein dealing with students having specific isolated difficulties. However, for theless well-prepared students a drop-in surgery ishardly sufficient. If they areto gain a coherent body of mathematical knowledgethereisno substitutefor an extended and systematic programme of study.

Additional Tests

Diagnostictestsreveal weaknessesin basicmathematical knowledgeeven amongsthemostwell qualified students.

At theUniversity of Warwick a successful method has been devised for deal ing with deficiencies with very able studentshavingover 29 A-level points and most with Further Mathematics - seeSection 3.2, Diagnostic Testing in theDepartment of Mathematics: DrTHawkes.

Mixed Ability Teaching vs Streaming

A diagnostic test will identify both thestrengthsand weaknesses of individual students and al so therangeof abilities of students in the cohort. Thequestion then to beaddressed is how best to teach them in thefirst semester mathematicsmodule? Often courserequirements and financial considerations aresuch that students haveto be taught as a singlegroup and so we areengaged in mixed-ability teaching!

Thereis an increasing awareness, however, amongst first year teachers of mathematicsthat mixed ability teaching, of a first year cohort with diverseknowledge and abilities, is quiteinappropriate. Indeed it can be disastrous by further compounding rather than solvingtheinitial problem. Theweaker students are "at risk" and remain so without a carefully planned programmeof help to assist them on the road to recovery.

At the University of Leeds an experiment is currently underway with theteaching of mathematicsto first year physicists who areadmitted with A level mathematics grades A to C but also includes a number with gradeD (and a good gradein physics). Diagnostictesting identifies students who are "at risk"-in the sensethat they aretheones who aremostlikely to fail the modulewhen taken by thewhole cohort. In an attempt to help this weaker group thecohort has been streamed with those "at risk" taught separately. They will cover thesamematerial (includingA level revision material) at a slower paceover a longer timeand sit the same examination as the "standard group". By theend of theacademic year we shall know theextent to which theexperiment has proved successful!

Finally we conclude with a perceptive emark from oneseminar participant on the effect of follow-up strategies which puts into sharp focus the extent of the challengethat now facesus;
" theproblem of decliningmathematical ability is alongstandingoneand its roots go deep. It is not at all clear that such cosmetic exercises at the point of entry to tertiary education will besufficient."

Findings and Recommendations

These aregiven in theSummary on page(iii).

Appendix 1

Mathematics at the Interface (1960-2000)

1960s Advanced level GCE (A-level) was an entrance examination for the Universities - run by them and geared to serve their needs.

A-level Mathematics was mainly Pure and Mechanics.
1970s Emergence of Statistics.
Universities experience problems teaching Applied mathematics at Year 1.
Diagnostic testing of mechanics.
1980s Universities loseautonomy in curriculum to the Government. SEC, SEAC, SCAA and now QCA validate awards.
Curriculum development preA-level of GCE and CSE into GCSE.
Numbers taking Mathematics at A-level start to drop dramatically.

1990s Deficiencies with al gebra become apparent.
New Mathematics courses emerge (1992)
These try to makemathematics a) more popular, and
b) moreaccessible

There is a wide variety in the mathematics content and mastery of the many different A level syllabuses available Many students taking A-level mathematics do not go on to use their mathematics in H.E.
Chaos/confusion in H.E.
Reports and anal yses are carried out by various bodies. Development of diagnostic testing of basic skills within universities.

Appendix 2

A level mathematics: the post 16 perspective

When	Pre 1986	1986+	1996+	2002+
Defined by	- Examination boards - Led by Universities - No statutory core	- Govemment control. - Mathematicscore - 40% Pure Maths (lessalgebra)	- Need to increase accessibility - New core - 30\% Pure, 10% Stats 10% modelling	- New core 50\% Pure, 25\% applications
	All Linear \longrightarrow All Modular			
Taught to	- Steadily inc reasing numbers - Class size rose to a mean of a round 10 and maxof about 15 - Most university entrants had A levels	- Failing numbers - Increase in class size - Maximum in FE rises to 25+ - Growth in other maths qualific ations	- Numbers start to improve. - Class sizes continue to increase. - Mean now between 15 and 18, - Continuing diversity	?
	Mainly $11-18$ schools \longrightarrow Mainly post 16 institutions			
To whom	- Most taking 3 or 4 science ormaths A levels - Most going on to science/maths/ engineering or out to work	- Growth in use of Mathematicsas a third subject for Arts, science and Humanities - Decrease in Further Maths	- Only $1 / 3$ rd of students with A level Maths go on to read science, engineering or maths - only 40% of engineering students have any A levelmaths (UCAS 1996) - Decrease in emphasis on Pure Maths	?
	Mainly science A levels \longrightarrow Mixed A levels			
Otherfactors	- Very little outside work - Most students full time - Maths sex ratio around 2:1	- Increase in numbers of studentsdoing outside work - Advent of AS Further Maths may have less Pure content - Sex ratio is $62 \%, 38 \%$ in 1995	- The mean no. of hours of paid employmentper week is around 12 . (study of 3 large post 16 institutions, 1997) - Push for more AS League tables No change in sexratio	?

Ann Kitchen, Centrefor Mathematics Education, Uni versity of Manchester,

Reviews of Diagnostic Testing

3.1 Gatsby Seminar on Diagnostic testing in mathematics experience from the Universtiy of Newcastle

JC Appleby, Department of Engineering M athematics

Introduction

Diagnostictesting hasbeen used at foundation level and then atfirst year level in mathematicsat Newcastlefor eight years. For several yearsa basicmechanicstesthas al so been in use. Diagnostictesting on entry may beused to: sel ect studentsfor special treatment or streaming, to identify spedific areasneedingattention for each individual and to survey group knowledgeto inform coursedesign and delivery. It isal so interestingto discover whether such testshave anypredictivepower with regard to futuresuccess.

Our overall aimsin usingdiagnosis and remediation wereto assistevery individual with information about their own needs, to providesufficient support for theweakest to enablethem to catch up and progress to a degree, and to inform curriculum design and admissionspolicy by relating knowledgeto background qual ificationsand to subsequent progress.

Results for the Mathematics test

TheMathematicstest results are not in themsel ves very startling, reveal ingal most completeknowledge of themost basic skills, and a predictablepatchinesson moreadvanced ones, even thosetheoretically covered by somehigher GCSE syllabuses(Table1). Thepossibility of entering algebraic answersto questions, and thecorrespondingly very limited useof multiple-choicequestions, helpsto produceresultsthat match one'sexpectations. However, all teachingstaff need to beaware of thesignificant proportion of students not knowing, for example, how to factorise difference of squares or how to divideal gebraicfractions. Moreover, a lack of knowledgeat thislevel islikely to mean not that they haven't met thetopic, but that they havefailed to absorb it reliably, and that therefore they may not pickitup quickly when revised.

Table 1. Knowledge of selected basic skills by Stage 1 Engineering students 1997 entry - proportion knowing, or inferred as knowing, each topic:
Manipulation of positivepowers 91\%
Manipulation of negativepowers 85\%
Manipulation of fractional powers 44\%
Expansion of two brackets, collecting terms 92\%
Factorising differenceof two squares 55\%
Dividing al gebraic fractions 68\%
Definition of radians 68\%
Gradient of linethrough two points 77\%
Equation of circle, given radius and centre 16%

Figure 1. Relationship of diagnostic maths mark and first maths exam mark, Stage 0

Figure 1 shows the correlation of diagnostic mark with a later exam mark. This is of interest in itself, but also providessomevalidation, which isneeded to usea diagnostictest with confidence, particularly one with inferences about knowledgebased on theskillsnetwork. For the 1996/7 Foundation Year, thecorrelation ishigh (for thiskind of data) at 0.72 , comparing well with thecorrelation between first and second exams in mathematics. However, notethat thepredictability for an individual ismeasured by adjusted R-squared - theproportion of the variancein theexam mark accounted for by the diagnostic mark. At a valueof 0.50, thisishigh (as predictionsgo) but indicates the difficulty in assigningremedial tuition - perhapshalf of thestudents so assigned will bein thewronggroup!

AtStage1, thecorrelation (0.6) and prediction (adjusted R-squared $=0.37$) islessgood, reflectingperhapstheless suitablecoverage of the Test; thefirstsemester maths courseislargely a revision of A-level in any case.

An additional statistic isprovided by therelationship of departmental means of diagnostic and first exam marks. Five departments aresplit into threelecturegroups, and many tutorial groups, and wewereinterested in theeffect of the different lecturers, together with departmental courseloadings, pastoral factorsetc. Thecorrelation of theaverage exam mark for the departments with the average diagnostic mark was a remarkable0.994 in 1996/7. That is, the departmental performancein thefirst maths exam in January could havebeen predicted almost perfectly from the diagnostic marks availablein early October!

Remedial provision

Asmentioned above, at Foundation Year and at Stage 1 in somedegrees, afull remedial moduleis provided for those deemed to beat risk, based on their diagnosticmark and qual ifications. Thetwo years' resultsavai lablefor Stage 1 students show a pleasingimprovementrelativeto themain group in their firstexam, butno subsequent improvement

Table 2. Remedial group results - Stage 1 entrants to M ech \& M ats degrees

		Stage1 results			Stage2 results		
Year	Number	1stexam	2nd exam	All subjects	1st exam	2nd exam	All subjects
$1994 / 5$							
Remedial	13	52	43	54	49	43	53
Whole	95	52	51	53	55	47	52
$1995 / 6$							
Remedial	10	54	42	47	50	n / a	n / a
Whole	78	56	50	52	63	n / a	n / a

(Table2). TheStage 2 resultsexdudethosestudents who failed or dropped out in Stage 1 (threeand four respectively), but themean results arestill below therest of thegroup (someof whom had al so gone).

The DIAGNOSYS Test

DIAGN O SYS isaskills-based computer testingsystem for basicmathematics. It is supplied with questionson 92 skillsin numeracy, algebra, trigonometry, statisticsetc. Normally a student will betested on $50-70$ skillsby selecting certain topic areas. Theknowledge-based approach used allowsdiagnosis of this rangeof knowledgeby asking questionsselectively, respondingto background qualification and to previous answers. For example, consider two algebra skills:

Expand $x(x+1) \Rightarrow$ Expand $(x+1)(x+2)$

Knowledgeof thesecond impliesknowledgeof thefirst, whilstignoranceof thefirstimpliesignoranceof thesecond. Typically, fewer than half theskillsneed betested, and atest of c60 skillscan becompleted in onehour. Theskillsare categorised asbeing at four'leve's' of difficulty, and arearranged in ahierarchical network.

Theoutput filesareprocessed to produceindividual 'profiles', ranked listings, 'group profiles' of knowledge (indudinganalysis of sub-groups, such asdifferent qualifications, sex, etc.), and tabulated answersto reveal common misunderstandings.

Usinga hierarchy of skillsthushasa twofold benefit: it reducesthenumber of questionsasked, and allowsthe system to target questions moreappropriateto theuser. Thenetwork, inferences and question design havebeen validated in several ways, as described in Appleby, Samuels and TreasureJones 1997.

DIAGN OSYS isdesigned to permit minor, major or completechangesto the questionsand knowledgebase. Tests on other subjectshavebeen constructed by others usingthissystem.

Publications

1997 DIAGN O SYS — a knowledge-based diagnostictest of basic mathematical skills. Computers in Education, 28, 113-131 (with PC Samuels and T TreasureJones)

1997 Diagnostictesting of mathematics and mechanicson entryM athematical Education of Engineers, Loughborough, IM A, 1997. (with A Anderson)

1995 Managingthetransition to University education: computer-based diagnostictesting of background knowledge. International C ongress of Engineering D eans and Industry Leaders, M onash, 1995. (with A Anderson and others)

1995 Diagnosis and treatment of students from varied backgrounds. IM A Conference: The M athematical Education ofEngineers, Loughborough, 1994. (with A Anderson, P Fletcher)

32 Mathematical preparedness for entrance to undergraduate engineering degree programmes, and diagnostic testing

Dr A Croft, Department of M athematical Sciences, Loughborough University

Abstract

In 1996 a Mathematics Learning Support Centrewas established at Loughborough University. Its primary raison d'etrewasto supportsignificant numbers of engineering undergraduates who werehavingserious difficulties coping with themathematical demands of their programmes. Sincethen it has developed an exceptionally wide range of resources usinga mix of traditional and modem technologies and now offersits servicestoany undergraduatestudent in the university who might benefit from additional help with learningmathematics.

TheCentrehas been thefocus of a number of initiatives induding diagnostictesting of new students. This has been carried out for threeyearsnow (1996, 7 and 8) and wasimplemented asfollows:
(i) for practical reasons thetest was paper-based multiple choice(OMR marked). About 600/700 students are involved, and to test such a largenumber by computer within a coupleof days of arriving at university is impossible
(ii) it has only been possibleto run a onehour test coveringnumber, basic algebra, and basic calculusvery superfidially. Thisis because thetesteither had to befitted into a busy induction period timetableor, exceptionally, afirst maths lecture Further, thequestionson the test werethought by staff to berather simple, and so getting a question correct does not imply competence. Certainly getting questions wrong raises concerns. Those of us concerned with thetest recogniseitsinadequacies and ideally would requirestudents to do amuch morecomprehensiveand longer test.
(iii) Students and tutors are given feedback within a couple of days. This consists of a raw mark only. However, studentsareinvited to theCentreto discouss detai led marks, and strengths and weaknesses, al though few do this. The data gathered has been useful to indicateareas of great weakness. Thetopics of 'Partial fractions' and 'Integration by substitution' particularly, stand out. Thishasenabled supporting materials to bemadeavailable, and somestudents do makeuse of them.

Themajor challengeis not the diagnostictestingitself, but what to do about theresults! Therearesignificant numbers of students who are weak across the wholespectrum of basic topics. Referingthem to extra remedial material whiletheir main mathscourseprogresses is often the only option avail ablebut is rarely seen to work. It takes a particularly highly motivated and maturestudent to do this. For themajority it is more appropriateto recommend a prolonged period on an alternativecourse at theright level, but this doesn't seem to happen. Engineeringdepartments want such students to be ableto proceed with mainstream engineering courses al ongside their well-prepared peers. Major problems arethemismatch between expectations and abilities and afailureto recognise what different levels of mathematical qual ification really mean. This resul ts in atremendous amount of unhappiness and misery for the affected students, and putsteaching staff in a no-win situation.

33 Diagnostic Testing at Keele

Dr D Quinney, Department of M athematics, Keele U niversity

Introduction

Therehavebeen considerablechanges in traditional studentnumbersand theirqualifications, in addition wehaveto take into account theinceesingnumber of studentswho arrivewith accessand foreign qualificationsand thenumber of mature students. Theyarrivewith a variey of differentmathematical knowledge. In order to establish the capabilities of each student it isnecessary to identify which skillsthey arecompetent in and thosefor which additional attention isrequired. Plenary teachingcan becomplemented byprovidingsupplementaryassistancethroughtutorials, supplementarydassesorCAL coursewarebutthisismoreeffectiveif each studenthas received preaseand detail ed information on their possible defidendes. Thelargenumbersof studentsinvolved meansthat thisiscan betimeconsumingand labour intensiveand demonstratestheneed for an automated, butrelativelysimple, diagnostictestortests.

Diagnostic Test Used at Keele

HoDoMS(Heads of Departments of Mathematical Sciences) hasfunded aWWW sitegivinginformation, contacts and casestudies of existingdiagnostictests. Detailscan befound at:
http://www.kele.ac.uk/depts/ma/diagnostid/

TheMathematics Department at KeeleUniversity selected a computer based diagnostictest written at Nottingham University by Hibberd \& Brydges. (Brydges S\& Hibberd S, 1994, Hibberd 5, 1996.) Customised versionsof thetest have been implemented by a number of UK universities. Thetest comprisestwenty multiplechoicequestions selected from a pool of 48 questionsto beanswered in 40 minutes; selected pseudo-randomly to ensurean adequate range of topic coverage A typical question isshown below.

Figure 1: Testing integration.

A total (percentage) score, weighted to minimise‘guesses' (+3 , for a correct answer and -1 for an incorrect answer), is determined at theend of the test. In addition to a student selecting a correct option they can al so abstain; the effect of which isto avoid the penalty of selectingan incorrect answer if unsure. At theend of thetest each student is presented with a diagnostic report, seefigure2. Based on thisprofileit is possibleto assign individual support material; in Keele's caseweuseMathwise. Global information on each cohort and question can bereadily extracted, includingthemost common incorrect answers and changes in cohort performance.

Although our primary aim isto help studentsto achievetheir potential thegathering of national information regardingthemathematical abilities of students in HE will al so bepossible. Such information will help longterm planningin HE and also providepositivefeedback to SCAA and secondary education in general.

Results at Keele University

In addition to providingindividual profilesfor studentsit is possibleto investigatetheskills of the wholecohort. Table1 shows the average scores of students entering Keele to read mathematics. The scores are normali ised so that an "average" student would score5 in each topic.

Table 1. Keele Results 1996-97

Topic	1996	1997
BasicAlgebra	6.62	9.01
Inequalities	7.07	2.25
Expansions	5.67	2.83
Co-ord Geometry	7.06	4.51
Differentiation	3.19	6.34
Maxand Min	7.48	5.56
CurveSketching	6.27	5.25
Integration	3.83	7.24
Logand Expfns	6.41	8.85
TrigFunctions	6.29	0.79

Thewide di screpancy indicates that simply selecting all studentsand providing common courses is not a possible option. Indeed, the variation suggest that a different set of support material would need to be devel oped each year. To thisend, after thestudent is presented with the profileitsresults arelinked to provideatailored coursewhich is provided byCAL.

3.4 Diagnostic Testing at Leeds

Professor B Sleeman, Department of Applied M athematical Studies, University of Leeds

Diagnostictesting was initial ly introduced in 1980 with first year mathematics undergraduates. They weregiven a onehour written test in mechanics to accesstheir basicknowledge and conceptual understanding. For a decade this proved a very useful means of identifyingthosestudents who needed extra help/special treatment in order to cope with a demanding first year course in applied mathematics.

In Mathematics

Morerecently (1998) diagnostic testing in mathematics was introduced following a series of high failurerates, longtails" and a general awarenessof a rapid dedinein themathematical knowledgeand skills of entrantsto mathematics-based degreeschemes. Thereisclearly a gulf between what many students understand/can do and what is expected of them!

A onehour written test wasthereforedesigned - coveringal gebra, trigonometry, differentiation and integration and given to 450 mathematicians, physidsts, engineers and jointhonoursstudents. Theaimsareto

- identify students' mathematical strengths/weaknesses
- identify "students at risk" (and needingstreaming)
- assessthesignificance of the 'A' level Mathsgrade

Two rather unexpected results are thefollowing,
(i) studentswith a good ' A ' level Mathematics grade (A or B) cannot be assumed to becompetent in basic mathematical skills.
(ii) most students havedeficienciesin cal culus and display a woeful lack of practice.

With regard to thelatter, support isgiven to physicists by way of a 5 credit CalculusConsolidation moduleto bring them up to speed.

Appendix 4

Further Evidence of the Decline

Mathematics Diagnostic Tests (1979-1999)

Professor J M athew, D epartment of Physics, U niversity of York

Since 1979 thePhysics Department at York hasgiven two multiplechoicediagnostictests, oneon Electricity and oneon Mathematics, to students enteringthe course Thetests weredeveloped in York as part of the Physics InterfaceProject, a joint scheme coordinated at theUniversity of Wales in Cardiff, and based on a Royal Society review of "What Physical Scientists should know when comingto University".

Thequestionsaim to definethelevel of skill and knowl edgeretained during thesummer after theA-level test. TheMathematicsquestionsreflect both basic puremathematics and mathematical manipulations relevant to physics, but do not indudeany Mechanicsthat might have been covered in Applied Mathematics. Thereare50 multiplechoicequestions with 4-answer choices on each question. Two samplequestionsaregiven below:

Q1. $\log _{0}(2 a b)-\log _{0}(a)$ is,
(A) $1+\log _{0} 2$
B) $\frac{\log _{0} 2 a b}{\log _{b} a}$
(C) $\log _{0} 2 a^{2} b$
(D) $\log _{b}(2 a b-b)$

Q2. Thegraph of thecurverepresented by the equation $x y=c$, $($ wherec $<0)$ is

(A)

(B)

(C)

(D)

Results of the test

Thegraph below dhartsthe performanceof different cohortsfrom 1979-1999.

Appendix5

List of Participants

Dr Jack Abramsliky
DrJohn Appleby
Professor Roger Baker
Professor Keith Ball
DrJanice Barton
Professor Cliff Beevers
DrPam Bishop
Dr Neil Challis
DrAmandaChetwynd
Dr Bill Cox
Dr Tony Croft
DrSueDunn
Dr Martin Greenhow
Dr David Griffel
Dr Trevor Hawkes
DrStephen Hibberd
Dr Keith Hirst
Professor Kenneth Houston
MrsAnn Kitchen
DrDuncan Lawson
Dr Sanjoy Mahajan
DrLeslieMustoe
Ms Lisa Page
Dr Judith Perry
Mr Roger Porkess
Dr DouglasQuinney
Professor Chris Robson
Mr Tom Roper
Professor Peter Saunders
Professor Mike Savage
Dr ChristineShiu
Professor Brian Sleeman
Professor Peter Stanley
Professor RosSutherland
Dr John Williams

Qualifications and Curriculum Authority
University of Newcastle upon Tyne
The Gatsby CharitableFoundation
University CollegeLondon
University of Liverpool
Heriot-Watt University
TheUniversity of Birmingham
Sheffield Hallam University
Lancaster University
University of Aston
Loughborough University
Queen Mary Westfield College
Brunel University
University of Bristol
University of Warwick
University of Nottingham
University of Southampton
University of Ulster
University of Manchester
Coventry University
University of Cambridge
Loughborough University
Gatsby Technical Education Project
University of Cambridge
University of Plymouth
Keele University
Seminar Chairman, University of Leeds
University of Leeds
King'sCollege London Professor
University of Leeds
Open University
University of Leeds
University of Manchester
University of Bristol
Gatsby Technical Education Project

June 2000

Published by the Engineering Council
10 Maltravers Street
London WC2R 3ER
Tel: 02072407891
Fax: 02072407517
email: info@engc.org.uk
web site: www.engc.org.uk

[^0]: REFERENCES
 Engineering Council (1995): The Changing mathematical background of undergraduate engineers (R. Sutherland and S. Pozzi), Engineering Council, London.
 Hirst, K. E. (1991) Changes in School Mathematics Consequences for the University Curriculum, University of Southampton.
 Hirst, K. E. (1990) Changes in A-level Mathematics from 1996, University of Southampton.
 Institute of Mathematics and its Applications (1995): Mathematics Matters in Engineering, IMA, Southend.
 Institute of Physics (1994): The case for change in post-16 physics: planning for the 21st Century, written by the Institute of Physics 1619 Working Party.
 Kitchen, A. (1999): The Changing Profile of Entrants to Mathematics at A-level and to Mathematical Subjects in Higher Education. Brit, Ed Res J, Vol 25, 1, 57-74.
 LMS (1995) Tackling the Mathematics Problem. Joint report of the LMS, Institute for Mathematics and its Applications and the Royal Statistical Society, LMS.
 Sutherland, R \& Dewhurst, H. (1999) Mathematics Education. Framework for Progression from 16-19 to HE, report produced by the Graduate School of Education, University of Bristol.

