Ten of the 13 numbered statements below if put in the right order prove this theorem:

Theorem 1 Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers such that

$$
a_{n} \rightarrow a \text { as } n \rightarrow \infty \quad b_{n} \rightarrow b \text { as } n \rightarrow \infty
$$

Then

$$
a_{n}-b_{n} \rightarrow a-b \text { as } n \rightarrow \infty
$$

A correct sequence

1. Suppose $\epsilon>0$
2. We must find N such that if $n>N$ then $\left|\left(a_{n}-b_{n}\right)-(a-b)\right|<\epsilon$
3. Because $a_{n} \rightarrow a$ as $n \rightarrow \infty$ there exists $N_{1}>0$ such that if $n>N_{1}$ then $\left|a_{n}-a\right|<\epsilon / 2$
4. Because $b_{n} \rightarrow b$ as $n \rightarrow \infty$ there exists $N_{2}>0$ such that if $n>N_{2}$ then $\left|b_{n}-b\right|<\epsilon / 2$
5. Put $N=\max \left(N_{1}, N_{2}\right)$
6. If $n>N$ then

$$
\begin{align*}
\left|\left(a_{n}-b_{n}\right)-(a-b)\right| & =\left|\left(a_{n}-a\right)-\left(b_{n}-b\right)\right| \tag{7}\\
& \leq\left|a_{n}-a\right|+\left|b_{n}-b\right| \tag{8}\\
& <\epsilon / 2+\epsilon / 2 \tag{9}\\
& =\epsilon \quad \text { as required } \tag{10}
\end{align*}
$$

Items 2, 3 and 4 can come in any order but must follow 1 and precede 5 . Otherwise the order is fixed.

Spoilers

11. Because $a_{n} \rightarrow a$ there exists N such that if $n>N$ then $\left|a_{n}-a\right|<\epsilon$
12. $\leq\left|a_{n}-a\right|-\left|b_{n}-b\right|$
13. Put $N=N_{1}-N_{2}$

Feedback

Using Statement 11: This is true but does not help satisfy Statement 2, which expresses the destination a rigorous proof must arrive at.

Using Statement 12: Think more carefully about modulus signs. It cannot be true in general that $|x-y|$ is smaller than $|x|-|y|$ as $|x-y|$ is non-negative whereas $|x|-|y|$ could be negative - if $x=1$ and $y=2$ for example.

Using Statement 13: The bigger the value of n, the more likely it is that the inequality in Statement 2 is satisfied so N given by $N_{1}-N_{2}$ is likely to allow in too small values of n in Statement 6 . Statement 5 could be replaced by "Put $N=N_{1}+N_{2}$ " as this would ensure values of n allowed by Statement 6 are big enough.

