mathcentre

Online open access mathematics learning resources

Janette Matthews

www.mathcentre.ac.uk

- 2003 established
 - Consortium Loughborough, Leeds and Coventry Universities; MSOR Network; EBS Trust
 - Components developed through mathtutor project (HEFCE and Gatsby Charitable Foundation)
- 2010 enhanced
 - Upgrade to website (JISC)
 - mathcentre Communities (FETLAR)

mathcentre in 2013

- Insights into users
- Content
- New resources
- mathcentre Community project

September 2012 – August 2013

250,000 visits

130,000 visitors

Visits per year	
201+	6900
101 - 200	3600
51 - 100	4300
26 - 50	6100

4:13 minutes

Regular Users (once a week)

Accessing mathcentre

Google	93.20%
Chrome	32%
Internet Explorer	28%
Safari	20%
Firefox	15%
Desktop	90%
Mobile	5%
Tablet	5%

49% access landing page

Most accessed resource types

RESOURCE TYPE	No of Resources
Video	66
Teach Yourself Booklet	57
Community Project	7
Refresher Booklet	5
Quick reference	3
External link	1
Fact & Formulae leaflet	1
Total	140

Most accessed resources

1	Algebra Refresher
2	Calculus Refresher
3	Maths EG
4	Arithmetic and Geometic Progressions (video)
5	Logarithms (video)
6	Completing the Square (video animation)
7	Tangents and Normals (video)
8	Arithmetic and Geometric Progressions (pdf)
9	Solving Differential Equations by Separating Variables (pdf)
10	Algebra Refresher (interactive version)
11	Maths EG Teacher
12	Completing the Square by Inspection (video)
13	The Chain Rule (video)
14	Force and Motion (motivating mathematics video)
15	Factorising Quadratic Equations (video)
16	Completing the Square (pdf)
17	Numeracy Refresher
18	Logarithms (pdf)
19	Tangents and Normals (pdf)
20	Integration by Substitution (video)

mathcentre Communities Project

- Mechanism to contribute resources
- Peer reviewed
- Templates
- Metadata
- Creative Commons
- Wish list

mathcentre Communities resources

Direct Proof

mccp-dobson-0211

Introduction

A direct proof is one of the most familiar forms of proof. We use it to prove statements of the form "if p then q" or "p implies q" which we can write as $p \Rightarrow q$. The method of the proof is to takes an original statement p, which we assume to be true, anthuse it to show directly that another statement q is true. So a direct proof has the following steps:

- Assume the statement p is true.
- Use what we know about p and other facts as necessary to deduce that another statement q is true, that is show p ⇒ q is true.

Example

Directly prove that if n is an odd integer then n^2 is also an odd integer.

Solution

Let p be the statement that n is an odd integer and q be the statement that n^2 is an odd integer. Assume that n is an odd integer, then by definition n=2k+1 for some integer k. We will now use this to show that n^2 is also an odd integer.

$$n^2 = (2k+1)^2$$
 since $n = 2k+1$
= $(2k+1)(2k+1)$
= $4k^2 + 2k + 2k + 1$ by expanding the brackets
= $4k^2 + 4k + 1$
= $2(2k^2 + 2k) + 1$ since 2 is a common factor.

Hence we have shown that n^2 has the form of an odd integer since $2k^2 + 2k$ is an integer. Therefore we have shown that $p \Rightarrow q$ and so we have completed our proof.

Example

Let a, b and c be integers, directly prove that if a divides b and a divides c then a also divides b+c.

Solution

Let a,b and c be integers and assume that a divides b and a divides c. Then as a divides b, by definition, there is some integer k such that b=ak. Also as a divides c, by definition, there is some integer l such that c=al. Note that we use different letters k and l to stand for the integers

©Katy Dobson University of Leeds Alan Slomson University of Leeds

- Quick reference leaflet 2 x A4
- mathcentre communities project logo
- author
- reviewer
- creative Commons
- metadata
 - title
 - description
 - keywords
 - topics
 - course
- source files
 - LaTeX/Word etc
 - diagrams

Maths e.g - Martin Greenhow, Brunel University

Maths e.g. Teachers interface

questions in test

lo	Description		Difficulty	Syllabus	Level	Included
	(a+b)(a-b), random a,b; MC		Easy	GCSE	Intermediate	②
	(ax+b)(cx+d) a,c -ve ,b,d +v	e; MC	Hard	GCSE	Intermediate	②
3	y^a divsign y^b; a, b +ve; MC		Intermediate	GCSE	Higher	②
	Back to tests	Delete selected qu	tions			

Numbas – Bill Foster, Newcastle University

Complex Roots of Polynomials - Numbas

2 questions finding roots of real polynomials. Numbas resources have been made available under a Creative Commons licence by the School of Mathematics & Statistics at Newcastle University.

Diagnostic Test in Differentiation - Numbas

26 questions: Product Rule, Quotient Rule and Chain Rule. For those that want a thorough testing of their basic differentiation using the standard rules. Numbas resources have been made available under a Creative Commons licence by the School of Mathematics & Statistics at Newcastle University.

Diagnostic Test: Indefinite Integration - Numbas

16 questions: Inverse of differentiation, substitution, inverse trig functions, partial fractions and by parts. For those that want a thorough testing of their basic techniques in integration. Numbas resources have been made available under a Creative Commons licence by the School of Mathematics & Statistics at Newcastle University.

Expanding Brackets - Numbas

9 questions: Expanding out expressions such \$(ax+b)(cx+d)\$ etc. Numbas resources have been made available under a Creative Commons licence by the School of Mathematics & Statistics at Newcastle University.

Factorising quadratics - Numbas

3 questions on factorising quadratics. The second question also asks for the roots of the quadratic. The third question involves factorising quartic polynomials but which are quadratics in \$x^2\$. Numbas resources have been made available under a Creative Commons licence by the School of Mathematics & Statistics at Newcastle University.

Numbas

Numbas

mathcentre: Expanding brackets

1. Expansion	of three brackets: Linear	Reveal	Next
1. Expansion of three brackets: Linear 2 marks.	Expand the following to give a cubic in y.		
Expansion of two brackets: Linear 1	(2y+8)(5y-2)(3y-1) = Your answer should be a cubic in y and should n	ot include any brackets.	
Expansion of two brackets: Linear 2 2 marks.	You can click on Show steps for more information	on, but you will lose one ma	rk if you do so.
4. Expansion of two brackets: Linear and Quadratic 2 marks. 5. Expansion of two brackets:	Show steps	Submit part	2 marks.
Expansion of two brackets: Quadratic and Linear 2 marks. Expansion of two brackets:			
Quadratic and Quadratic Total 0/17			
Pause End Exam			
Subn	nit answer Try another question like this on	е	Next

Statistics resources - statstutor

mathcentre for staff

- Key reports
- sigma guides
- Research publications
- links

HE STEM – HE Curriculum Innovation

sigma Guides

mathematics learning support in UK higher education

Coming soon

- Facts & Formulae leaflets in Welsh
 - Dr Tudur Davies (Coleg Cymraeg Cenedlaethol)
- DEWIS algorithmic e-assessment questions
 - Dr Rhys Gwynllyw (University of the West of England)
- sigma Annual Report 2012/13
- sigma Resource workshop 18 September

mathcentre in 2013

- Well used repository of open access resources
 - Mathematics learners
 - Academics
 - Mathematics support practitioners
- Well regarded by the community
- Expanding through mathcentre Community Project

Contact mathcentre

- Sign up to mathcentre mailing list
- community@mathcentre.ac.uk
- J.Matthews@lboro.ac.uk

